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1. Introduction

Physical observables are gauge invariant, so it does not seem unreasonable to assume that

it should be possible to bypass the unpleasantness of gauge fixing in any fundamental

approach to gauge theories. Indeed, this is one of the virtues of the lattice approach and

for important classes of “gold-plated” observables, such as masses or decay constants of

stable hadrons, there have been spectacular successes [1]. However, not all observables fall

into this class and a basic fact of life is that for many important observables, being gauge

invariant does not mean that the issues concerning gauge fixing can be avoided. Indeed,
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important properties of some observables only become clear once their connection to gauge

fixing has been clarified. A fundamental example of this, and one that we shall focus on

in this paper, is colour [2].

Although it sounds paradoxical, gauge fixing offers a route to the construction of certain

gauge invariant quantities. In particular, charges constructed in this way [3] have better

infrared properties than conventional fields and offer a possible resolution to the infrared

crisis that plague gauge theories [4]. The main virtue of this approach to charges is that

they are not simply made gauge invariant and then assumed to overlap with some unknown

physical state (such as in the use of Wilson lines to probe the inter-quark potential on the

lattice) but that their physical significance is built into their very construction from the

beginning.

The process of using gauge fixing to construct a gauge invariant charge is called dress-

ing. Physically, we envisage the matter field being dressed by gauge fields to make it gauge

invariant. This, though, is done in a very precise way which reflects the kinematics of the

charges involved. So the dressing for, say, a static charge is different to that of a moving

charge: each one will have a special gauge fixing that is adapted to it. For a static charge

it is the Coulomb gauge that plays the central role and in that gauge the gauge invariant

static charge takes its simplest form.

Hence for observables such as colour the thorny issues associated with gauge fixing take

on a new urgency. In particular, the Gribov copies [5] associated with a wide class of gauge

fixings cannot be treated as just a technical issue to do with over-counting configurations,

but will have direct physical consequences. In [2], general arguments were given for the

global breakdown of colour charges in QCD due to such copies. This implies that Gribov

copies and the underlying global topology of the Yang-Mills configuration space [6], lead

inexorably to the absence of colour in unbroken gauge theories. Many advances are still

needed to fill out this route to confinement. The infrared dynamics of these charges is subtle

and although there has been some progress [3, 4], much still needs to be done, particularly

in understanding collinear divergences. However, recent lattice simulations [7] have used

such dressings to calculate the non confining inter-quark potential, which gives additional

support to this programme.

In this paper we want to expand on the arguments given in [2] and understand precisely

how Gribov copies obstruct the construction of a charge in a non-abelian gauge theory. To

this end it is desirable to have a set of simple examples of such copies. Although the

literature on this topic dates back to Gribov’s original 1977 paper (for a recent review

see [8]), we should note that charges are never considered and that the bulk of such work,

see e.g. [15], deals with gauge transformations U(x) that are non-trivial asymptotically,

i.e., U(x) 9
�

as |x| → ∞ and as such correspond to ‘large’ gauge transformations which

belong to the disconnected part of the group of gauge transformations.

Due to this restriction, simply adding charges to what has been done before is not as

simple as it sounds since we have shown [2] that we must asymptotically have U(x) → �

(or at least the centre) for a colour charge to be well defined. Two papers are worth noting

in this context. Henyey [9] constructed an explicit set of copies of an axially symmetric

gauge field, while Grotowski and Schirmer [10] proved that a large class of spherically
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symmetric configurations have copies. In both cases the gauge transformations are regular

ones for which a colour charge can be defined. Although the Grotowski and Schirmer

paper gave no examples it is very suggestive as it offers the possibility of a large class of

explicit configurations that would allow us to probe the extent to which colour charges

can be defined. It is important to note that in most discussions in the literature the

coupling g is hidden. We will include the coupling as this will allow us to demonstrate the

non-perturbative nature of the copies even when they are generated infinitesimally.

The plan of this paper is as follows. After this introduction, in section 2 we will recap

how colour is defined and the significance of this for the allowable gauge transformations.

We will then present the dressing approach to the construction of static colour charges

which extends the methods given in [2]. In section 3 we will enlarge on the arguments

given by Grotowski and Schirmer [10], and then construct explicit examples of spherically

symmetric copies. The role of the centre in these constructions will be also be investigated

and this will throw some light on the complicated topology of the Gribov horizons.

Following this, in section 4 we will investigate the extent to which such configurations

can have copies within the Gribov horizon. Our results here contradict one of the conclu-

sions in [10]. We will conclude in section 5 by tracing the impact of the copies on the colour

charges constructed in section 2. We will see explicitly that the colour acquires a gauge

dependence which emerges through the copies. Although this breakdown of colour will

be manifestly non-perturbative, we shall see that it can arise even infinitesimally. After a

general conclusion we include several appendices where technical results are presented.

2. A world of colour

Imagine a world of colour. By this we mean that there exist (asymptotic) states with well

defined colour. The fundamental question at the heart of confinement is then: to what

extent is this possible? Charges in gauge theories are notoriously hard to construct, even

in the abelian theory [4]. However, we shall see that there is an unavoidable obstruction in

unbroken non-abelian theories which stops the partonic, effective colour degrees of freedom

from becoming genuine asymptotic states.

To proceed let us fix notation and recall some basic facts about gauge theories. The

gauge transformations on the vector potential and matter fields are:

Aµ → AU
µ := U−1AµU +

1

g
U−1∂µU and ψ → ψU := U−1ψ , (2.1)

where Aµ = Aa
µT a and T a are anti-hermitian matrices in the appropriate representation

of SU(N) and g is the coupling constant. Writing U = exp(gαa(x)T a), we identify the

generator of gauge transformations with the charge

G(α) =

∫

d3x Ga(x)gαa(x) :=

∫

d3x
(

Ja
0 (x) − 1

g
(DiEi)

a(x)
)

gαa(x) , (2.2)

where Di = ∂i + g[Ai, ·] is the covariant derivative, Ja
0 = −iψ̄γ0T

aψ and Ea
i (x) is the

chromo-electric field. The Gauss law constraint used to identify physical states is then
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taken to be1

Ga(x)|physical 〉 = 0 . (2.3)

2.1 Defining the colour charge

The conserved Noether current associated with the gauge transformation is given by

ja
µ(x) = Ja

µ(x) − fabcF b
µν(x)Aν c(x) , (2.4)

where fabc are the structure constants. Hence the colour charge Q = QaT a is given by

Qa =

∫

d3x ja
0 (x) =

∫

d3x
(

Ja
0 (x) − fabcAb

i(x)Ec
i (x)

)

. (2.5)

This is conserved but it is not gauge invariant and hence cannot immediately be identified

with a physical observable. However, acting on physical states defined by (2.3) it takes a

particularly simple form

Q|physical 〉 =
1

g

∫

d3x ∂iEi(x)|physical 〉 =
1

g
lim

R→∞

∫

S2

R

ds · E(x)|physical 〉 , (2.6)

where we have used the divergence theorem to get an integral over the spatial two-sphere of

radius R. In this form it is straightforward to apply a gauge transformation to the charge

to get

QU =
1

g
lim

R→∞

∫

S2

R

ds · U−1(x)E(x)U(x) . (2.7)

If we require a physical colour charge then we must have QU = Q when acting on physical

states. To ensure this we must have that U(x) tends to a constant U∞ in the centre of the

group. So for SU(2) we have a physical colour charge as long as

U(x) → ±�
as |x| → ∞ . (2.8)

2.2 Constructing colour charges

Having clarified what the colour charge is and the states that it must act upon, we now

need to construct physical states that carry colour. An immediate observation is that the

matter fields ψ(x) are not suitable since they are not gauge invariant and hence neither can

be identified with observables nor have a colour. What is required is a composite operator

of the form

Ψ(x) = h−1(x)ψ(x) , (2.9)

where the field dependent dressing h−1(x) transforms as

h−1(x) → h−1U(x) , (2.10)

under the gauge transformations so as to compensate for the transformation of the matter

field.

1The relationship between this condition and the gauge invariance of physical states is a subtle one that

we do not need to worry about in this paper.
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Figure 1: The ‘hoped for’ view of gauge fixing — that the gauge orbits intersect the chosen gauge

slice (e.g. ∂iA
a
i

= 0 in Coulomb gauge) once and only once.

Dressings may be generated using gauge fixing conditions and why this should be so is

quite easy to see. Recall that gauge fixing is supposed to pick out a unique representative

from the orbit of gauge related potentials. So let χ(A) = 0 be a gauge fixing condition.

For any configuration A there is a unique gauge transformation h ≡ h[A] which takes

the representative A to the point on the orbit where the gauge fixing condition holds,

i.e. χ(Ah) = 0. Now consider a different point on the orbit, AU , then there will be a

dressing hU ≡ h[AU ] that takes it to the gauge fixing condition. From this it follows that

χ((AU )h
U
) = χ(AUhU

) = 0 and therefore by uniqueness that hU = U−1h so that h−1

transforms as a dressing.

As discussed in [11], there are various possible choices for the dressing but most of

these would represent highly excited states with little or no overlap with a physical charge.

The dressing may be fixed by imposing the condition that the resulting charge is static.

In that case, the dressing (or at least the part responsible for making the matter field

gauge invariant, which is all which will concern us in this paper, see however, [13]) can be

identified with the field dependent gauge transformation which takes a potential Aµ into

Coulomb gauge ∂i(A
h)i = 0. Tests of this construction have been carried out by studying

the infrared properties [3] of the fields and the inter-quark potential [12, 7] between two

such charges.

So, for a static charge we need to solve the Coulomb gauge condition for h,

∂i(A
h)i = ∂i(h

−1Aih +
1

g
h−1∂ih) = 0 . (2.11)

To help in this we note that the above may be written as

∂i(Ai +
1

g
h−1Dih) = 0 , (2.12)

where now the covariant derivative acts on the group elements by simple commutation:

Dih = ∂i + g[Ai, h].

If we write h = ev then, as discussed in appendix A, we can write

h−1Dih =
1 − e

−→v

−→v
Div , (2.13)
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∂jA
a
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4

Figure 2: The Gribov problem: a gauge field A may be gauge equivalent to multiple copies in the

same gauge slice as the gauge orbit AU intersects (points 1,2,3. . . ) or becomes tangential to the

gauge slice (point 4).

where we define powers of v acting to the right on some operator B by −→v 0B = B, −→v B =

[v,B] and −→v nB = −→v (−→v n−1B). Acting on this by ∂i we get

∂i(h
−1Dih) =

1 − e
−→v

−→v
(∂iDiv) +

[

1 − e
−→v

−→v
,

−−−→
1
−→v

∂iv

]

Div . (2.14)

Substituting this expression into (2.11) allows us to construct the static dressing, at least

perturbatively. In particular, if we expand v as a power series in the coupling v =
∑

gnvn,

then we readily find that, for example,

v1 =
∂iAi

∇2
and v2 =

∂j

∇2
([v1, Aj ] +

1
2 [∂jv1, v1]) . (2.15)

In this way we can perturbatively identify the static quark with the dressed field

Ψ = h−1ψ = egv1+g2v2+...ψ . (2.16)

In this and what follows the Laplacian is ∇2 = ∂i∂i.

3. Gribov copies

The simple view depicted in figure 1 of gauge fixing as selecting a unique representative from

each orbit does not hold in practice and, as shown in figure 2, the actual interplay between

the gauge orbits and the gauge slice can be quite complicated. The existence of such copies,

even when the gauge transformations are restricted to lie in the centre asymptotically, are

guaranteed by Singer’s theorem [6]. Here we shall show how to explicitly construct such

Gribov copies.

3.1 Spherical copies

In the remainder of this paper we will take our gauge group to be SU(2), where

[T a, T b] = εabcT c , T a =
1

2i
σa ,

with σa the Pauli matrices. We start with configurations of the form

Aa
i (x) =

f(r) − 1

r
εiab

xb

r
. (3.1)
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This is the simplest type of spherically symmetric configuration and is the form consid-

ered by Grotowski and Schirmer [10]. The key point to note is that this configuration

automatically satisfies the Coulomb gauge condition ∂iA
a
i = 0. Consider now the gauge

transformation described by

U(x) = exp

(

2gα(r)
xa

r
T a

)

,

= cos (gα(r))
�

+ i sin (gα(r))
xa

r
σa ,

(3.2)

where we are setting αa(x) = α(r)xa/r. This transformation takes A to AU where

(AU )ai =

(

f(r) cos(2gα(r)) − 1 + 2
(

1 − g−1
)

sin2(gα)

)

1

r
εiad

xd

r
(3.3)

−2α′(r)
xixa

r2
− sin(2gα)

r

(

f(r)− 1 + g−1
)

(

δia − xixa

r2

)

.

This is an example of a more general spherical configuration. We now impose the condition

∂i(A
U )ai = 0 to find copies. Only the final two terms in (3.3) make a nontrivial contribution

to the Coulomb gauge condition, so we need to solve:

∂i

(

2α′(r)
xixa

r2
+

sin(2gα)

r

(

f(r) − 1 + g−1
)

(

δia − xixa

r2

))

= 0. (3.4)

From this, using the properties of the transverse projector, we rapidly arrive at the key

equation for the existence of copies:

r2α′′(r) + 2rα′(r) −
(

f(r)− 1 + g−1
)

sin(2gα(r)) = 0 . (3.5)

This is the equation that we must solve to find the initial configuration, f , and the gauge

transformation, α, which takes us to a copy. Note that Grotowski and Schirmer proved the

existence of solutions to this equation (at g = 1) along with suitable boundary conditions.

As such we need to discuss the boundary conditions that we use (which are more general

than those considered in [10]).

For (3.2) to be a regular gauge transformation we require that gα(r) → nπ as r →
0 for n ∈ Z. We may take n to be even or odd so that U(x) approaches ±�

at the origin.

As we have seen, to define colour we need similar boundary conditions at spatial infinity.

Our allowable boundary conditions are therefore

gα(r) →
{

2nπ

(2n + 1)π
as r → 0,∞ =⇒ U(x) →

{

�

−� . (3.6)

Boundary conditions on the function f come from finite energy and norm restrictions. The

L2-norm of a configuration A is defined in the obvious way as

‖A‖2 :=

∫

d3xAa
i (x)Aa

i (x) . (3.7)
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Applied to our class of configurations (3.1) we see that

‖A‖2 = 8π

∫ ∞

0
dr (f(r) − 1)2. (3.8)

So if we require a finite norm, given that f is regular, we must have that

f(r) → 1 as r → ∞ . (3.9)

There is no compelling physical reason for imposing such a finite norm condition on our

configurations. However, following Grotowski and Schirmer we shall do so here as mathe-

matically it leads to simplifications. Note, though, that weakening this condition is possible

and we will discuss this in section 4.4.

In contrast to the norm of the configuration, the norm of the field strength is of

central importance as it is the energy of the configuration. For our spherically symmetric

configuration we see that

‖FA‖2 = 4π

∫ ∞

0
dr

(f2(r) − 1)2

r2
+ 2f ′(r)2. (3.10)

Finiteness here implies

f(r) → 1 as r → 0 ,

f ′(r) → 0 as r → ∞ .
(3.11)

Note that, as expected, the copy configuration will have the same energy but a different

norm given by

‖AU‖2 = 4π

∫ ∞

0
dr 2

[

f(r) cos(2gα(r)) − 1 + 2 sin2(gα(r))(1 − g−1)
]2

+ 2 sin2(2gα(r))(f(r) − 1 + g−1)2 + 4r2(α′(r))2.

(3.12)

The rate at which the boundary conditions (3.6), (3.9) and (3.11) are attained is dictated

by the convergence of the norms of A, FA and AU .

3.2 Explicit examples

To solve (3.5) we initially take the boundary conditions used in [10] where α → 0 for both

r → 0 and r → ∞. The idea here is to use Henyey’s trick [9] of inputting the gauge

transformation, α, by hand and then finding the copied configuration, f , via

f(r) =
r2α′′(r) + 2rα′(r)

sin(2gα(r))
+ 1 − 1

g
. (3.13)

Now comes a simple observation: using the limit x/ sin(x) → 1 as x → 0 and given the

boundary conditions on α, we can automatically satisfy the boundary conditions on f if

we insist that

r2α′′(r) + 2rα′(r) → 2α(r) as r → 0 and r → ∞ . (3.14)

– 8 –
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Figure 3: f(r) as constructed in (3.18) and (3.19). The upper curve has g = 1, the lower g = 1/2.

The equation

r2α′′(r) + 2rα′(r) = 2α(r), (3.15)

is easy to solve resulting in two types of solution:

α(r) ∝ r and α(r) ∝ 1

r2
. (3.16)

Note that these relations need to be interpreted with a little care as α is dimensionless.

More properly we should write, for example, that α(r) ∝ r/r0 where r0 is some fixed length

scale. For simplicity, we shall omit reference to this scale.

Hence we see that if

α(r) ∼
{

r as r → 0 ,
1
r2 as r → ∞ ,

(3.17)

then we satisfy both the boundary conditions on α(r) and those on f(r). These are the

only conditions we must satisfy in order to find finite norm, finite energy configurations

with Gribov copies, and there are very many ways to solve (3.17). The simplest examples

are where α(r) is a rational function. For example, take

α(r) =
r

1 + r3
. (3.18)

The resulting f(r) derived from (3.13) clearly has a coupling dependence. We find

f(r) =
2r

(1 + r3)3
1 − 7r3 + r6

sin
( 2gr

1+r3

) + 1 − 1

g
. (3.19)

The non-perturbative nature of these solutions is now explicit in the unavoidable presence

of factors of g in the denominators. In figure 3 we plot two such configurations. The norms

of this configuration and of its copy, for example at g = 1, are

‖A‖ '
√

137 ' 11.7 ,

‖AU‖ '
√

136 ' 11.6 ,

– 9 –



J
H
E
P
0
3
(
2
0
0
7
)
0
4
4

2 4 6 8 10
r

0.1

0.2

0.3

0.4

0.5

Figure 4: As β → 0, α(r) approaches 0. Here our α(r) is plotted for β = 1, 1/2, 1/5, 1/20.

and the energy is ‖FA‖ '
√

340 ' 18.4. Note that the set of connections satisfying the

Coulomb condition is a linear subspace of the Yang-Mills configuration space A, which is

itself a convex space. Thus we can meaningfully use the norm to measure the difference

between configurations. In particular, the distance between the copies is

‖AU − A‖2 = 4π

∫ ∞

0
dr 2

[

f(r)(cos(2gα(r)) − 1) + 2 sin2(gα(r))(1 − g−1)
]2

+ 2 sin2(2gα(r))(f(r) − 1 + g−1)2 + 4r2α′(r)2.

(3.20)

Now, following [14], if we introduce a parameter β via the replacement α(r) → βα(r), then

it is clear that

‖AU(β) − A‖2 → 0 as β → 0 . (3.21)

That is, the copies coalesce as β gets smaller. For β very small the two non-perturbative

copies are infinitesimally close and we are clearly approaching a configuration on some sort

of boundary, a point to which we will return in the next section. Consider the example

α(r) =
rβ

1 + r3
. (3.22)

Provided that |2gα(r)| < π (we will return to this point later, for the moment this is easily

satisfied, especially as we will shortly take the limit of β → 0) there are no divergences

in f(r) and as β → 0 the gauge configuration and its copy coalesce, see figure 4. The

corresponding f(r) in this limit is

f(r) = 1 − 9r3

g(1 + r3)2
, (3.23)

with norm ‖A‖ = 8π
33/4g

. The energy of this configuration is

‖FA‖ =
32π2(10 − 21g + 24g2)

9
√

3g4
.
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r → 0 r → ∞
‘Closed’ type U → ±�

U → ±�

‘Open’ type U → ±�
U → ∓�

Table 1: Taxonomy of open and closed boundary types

3.3 The centre

We have so far considered only those transformations with α(0) = α(∞) = 0 implying

U(x) approaches unity at zero and spatial infinity. Recall, though, that in order to have

a regular transformation we must have gα(r) → nπ as r → 0, so that U(x) → ±1 there,

and that we may relax the boundary condition at infinity to U(x) → ±1 without losing

the ability to define a physical charge.

The gauge transformations we consider therefore fall into two classes, best summarised

by their boundary conditions, see table 1. The examples considered previously are of

‘closed’ type — this language will shortly be clarified. We now wish to give solutions to

(3.5) for general open and closed gauge transformations.

We begin by expanding the discussion of the limits previously used to solve (3.5). For

either open or closed transformations we may write gα = nπ + gω(r) such that ω(0) = 0.

The periodicity of sine in f(r) leads to the same problem as previously considered,

f(r) =
r2ω′′(r) + 2rω′(r)

sin(2gω(r))
+ 1 − 1

g
,

where α(r) is now replaced by ω(r). We conclude that ω(r) ∼ r for r small. Now write

gα = mπ + gΩ(r) such that Ω(r) vanishes at infinity, then we must solve

f(r) =
r2Ω′′(r) + 2rΩ′(r)

sin(2gΩ(r))
+ 1 − 1

g

and we see that f(r) satisfies the boundary conditions (3.9) if Ω(r) obeys the same asymp-

totic behaviour as the original α(r), that is Ω(r) ∼ 1/r2 at infinity. Therefore all our gauge

transformations must behave like

α(r) = nπ + const. r + . . . as r → 0, α(r) = mπ + const. r−2 + . . . as r → ∞.

Now that we have identified this shared small r and asymptotic behaviour we will discuss

the two classes of transformations in more depth.

3.4 Open configurations αo

‘Open’ configurations interpolate between U(0) = ±�
and U(∞) = ∓�

. Therefore αo(r)

obeys

gαo(r) →
{

2nπ,

(2n + 1)π
as r → 0 and gαo(r) →

{

(2m + 1)π,

2mπ
as r → ∞, (3.24)
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and clearly must pass through an integer multiple of π/2 where f(r) diverges unless we

construct it carefully. The limits we employ at r = 0 and r → ∞ may also be applied here.

Suppose gαo(c) = π/2. Expand gαo(r) = π/2 + gγ(r) with γ(c) = 0, then

f(r) = −r2γ′′(r) + 2rγ′(r)

sin(2gγ(r))
+ 1 − 1

g
. (3.25)

Aside from an initial minus sign, our problem is unchanged from previous arguments. We

know that this function will be well behaved at r = c if γ(r) is a linear combination of r

and 1/r2 near r = c. The condition γ(c) = 0 implies

γ(r) ∼ λ

(

r − c3

r

)

(3.26)

near r = c for λ some constant. A similar trick works at all multiples of π/2. This identifies

the behaviour of αo(r) at all potentially problematic interior points.

Given an f(r) and the αo(r) which generate copies we may consider the gauge trans-

formation αo(r/β) in the limit β → 0. The distance between copies is

‖AU(αo) − A‖2 = 4π

∫ ∞

0
dr 2

[

f(r)(cos(2gαo(rβ
−1)) − 1) + 2 sin2(gαo)(rβ

−1)(1 − g−1)
]2

+ 2(f(r) − 1 + g−1)2 sin2(2gαo(rβ
−1)) + 4r2β2α′

o(rβ
−1)2.

Changing variables r = vβ yields

‖AU(αo) − A‖2 = 4πβ

∫ ∞

0
dv 2

[

f(βv)(cos(2gαo(v)) − 1) + 2 sin2(gαo(v))(1 − g−1)
]2

+ 2(f(βv) − 1 + g−1)2 sin2(2gαo(v)) + 4v2(∂vαo(v))2.

(3.27)

As β → 0, f(βv) → 1 for all v and the integral above becomes

∫ ∞

0
dv 2

[

cos(2gαo(v))−1+2 sin2(gαo(v))(1−g−1)
]2

+2g−2 sin2(2gαo(v))+4v2(∂vαo(v))2,

which is seen to be finite using the behaviour gαo(r) ∼ π + const./r2 at infinity. As the

integral is multiplied by β the distance between the copies vanishes as β → 0.

In this limit all features of α are localised close to the origin and U(x) → U(∞) in the

open interval r ∈ (0,∞), whereas U(0) = −U(∞) independent of β. This is illustrated in

figure 5 for αo(0) = 0, gαo(∞) = π, so that U(0) =
�

independent of β, but U(x) → −�

for all x 6= 0 as β → 0.

Compact expressions for open configurations seem hard to find, however in appendix

B we show how they can be constructed by patching functions together.

3.5 Closed configurations αc

Closed type configurations αc interpolate between U(0) = ±�
and U(∞) = ±�

. When the

αc approach the same multiple of π at both zero and infinity they are, in general, given

– 12 –
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Figure 5: As β → 0, gαo(r/β) flows to the left, approaching π for all non zero values of r.

by translations of the α(r) we originally considered (for the special case α(0) = α(∞)), of

the form gαc(r) = (2n + 1)π ± gα(r). Provided the original α(r) was suitably bounded so

that it did not cause a divergence in f(r) then neither will αc(r), in fact these result in the

same f(r) and copy.

For example, including the parameter β, an example of a closed transformation is

αc(r) =
π

g
− βα(x) =

π

g
− βr

1 + r3
. (3.28)

This gαc approaches π at both r = 0 and r = ∞ and f(r) is well behaved for all β ≤ 1.

As β → 0 the gauge transformation approaches U(0) = U(∞) on the (half) closed interval

[0,∞). The distance between copies is, using the translation properties of the trigonometric

functions, unchanged,

‖AU(αc) − A‖2 = ‖AU(α) − A‖2

= 4π

∫ ∞

0
dr 2

[

f(r)(cos(2gβα(r)) − 1) + 2 sin2(gβα(r))(1 − g−1)
]2

+ 2 sin2(2gβα(r))(f(r) − 1 + g−1)2 + 4r2β2α′(r)2,

(3.29)

and again the distance between copies vanishes as β → 0.

If αc interpolates between different odd multiples of π then, provided αc behaves as in

(3.26) at multiples of π/2, we may again consider the transformation αc(r/β) as β → 0.

Here, as in the open case, all features of αc(r) become localised around r = 0 and U(x)

approaches U(∞) at all non zero points. The difference between this and the open case is

that U(0) = U(∞) from the outset, so that although αc only approaches a single value on

the open interval r ∈ (0,∞), the gauge transformation U(x) → U(0) = U(∞) again on the

(half) closed interval r ∈ [0,∞).

4. The Gribov horizon

To clarify what is going on here we need to recall some basic definitions associated with Gri-

bov copies. Given a configuration with its copies, the associated Faddeev-Popov operator

is commonly used to pick out a subset of copies.

– 13 –
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Figure 6: The small β behaviour of the closed type configuration (3.28) with g = 1. The corre-

sponding gauge transformation U(x) → −� for all x ∈ R
3 as β → 0.

In the Coulomb gauge, with ∂iA
a
i = 0 and U = 1 + αaT a an infinitesimal gauge

transformation, the equation for the existence of copies becomes

0 = ∂i

(

U−1AiU +
1

g
U−1∂iU

)

= ∂i

(

Ai − [αaT a, Ai] +
1

g
∂iα

aT a + . . .
)

= −1

g
DAαaT a,

where DA = −∂iDi is the Faddeev-Popov operator. We see that the condition for the

existence of a copy AU close to the original configuration A is the existence of zero modes

in the Faddeev-Popov operator. The first Gribov region is defined as the subset of config-

uration space where the Faddeev-Popov operator is positive definite. It is bound by the

‘Gribov horizon’, on which the Faddeev-Popov operator picks up its first zero mode. Out-

side this region, see [5] for a fuller discussion, the zero mode becomes a negative eigenvalue

mode and further zero modes of the operator appear. We may further decompose con-

figuration space into Gribov regions defined by the number of negative eigenvalue modes

of the Faddeev-Popov operator.2 Restricting gauge fields to lie within the Gribov hori-

zon is common practice in, for example, lattice calculations (where Coulomb gauge fixing

is implemented via a variational argument) but does not eliminate copies, nor is there a

physical motivation for this restriction. In this section we will consider the proof in [10]

that spherical copies lie inside the Gribov horizon.

4.1 The Grotowski-Schirmer argument

We begin with an overview of the Grotowski and Schirmer argument. The Faddeev-Popov

operator in Coulomb gauge is

DA = −∂iDi = −∇2 − g[Ai, ∂i · ] , (4.1)

although for now we restrict to g = 1, as in [10]. It should be noted that the authors of [10],

to which we will frequently refer, use 4 for both the full Laplacian and only the radial

2Each of these regions is bounded by horizons. It is standard practice to refer to the first region and

horizon as ‘the Gribov region’ and ‘the Gribov horizon’, a convention we follow in this paper.
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part in spherical co-ordinates. Given an arbitrary state we may decompose it in spherical

vector harmonics. The lowest order term is a radial vector of the form,

Φ(x) = φa(x)T a = φ(r)
xa

r
T a , (4.2)

on which the Faddeev-Popov operator evaluated at one of our spherical configurations

operator takes the simple form

(DAΦ)a = −
(

φ′′ +
2

r
φ′ − 2

r2
φ

)

xa

r
+ 2

f(r) − 1

r2
φa

=
xa

r

(

− 1

r2
∂rr

2∂r +
2f(r)

r2

)

φ(x).

(4.3)

This expression is positive definite provided f ≥ 0. The Grotowski and Schirmer argu-

ment now proceeds by evaluating the effect of the Faddeev-Popov operator on all higher

harmonics in the field, and showing that positive definiteness on radial vectors is sufficient

to extend the same property to the whole series with only the supplemental constraint

−1 ≤ f ≤ 3. Already we see a curiosity — if f can be negative, it no longer seems that

(4.3) may be positive definite (see below). This is easily resolved though, as we simply

insist that 0 ≤ f ≤ 3. With this, positivity of f(r) leads to positivity of DA which shows

that the gauge field (and the copy which may be made infinitesimally close to it, as in

(3.22)) lie within the Gribov horizon.

4.2 Reinstating the coupling

We will now add some detail to the above discussion, along with the factors of g. We

expand a general field

Φ(x) =
∑

jlm

φjlm(r)Y a
jlm(θ, φ)T a , (4.4)

where Y a
jlm(θ, φ) are an orthonormal basis for su(2) valued-functions on the 2-sphere carry-

ing orbital angular momentum (j) and total angular momentum (l). The third component

of the total angular momentum is m. The sum is understood to be constrained by |m| ≤ l,

j ≥ 0 and |j − l| ≤ 1 for j > 0, l = 1 for j = 0. The first term in the series has j = m = 0,

l = 1 and is the radial field (4.2). The Faddeev-Popov operator evaluated at one of our

spherical configurations and acting on radial vectors gives

(DAΦ)a = −
(

φ′′
010 +

2

r
φ′

010 −
2

r2
φ010

)

xa

r
+ 2g

f − 1

r2
φ010

xa

r

=
xa

r

(

− 1

r2
∂rr

2∂r + 2g
f − 1 + g−1

r2

)

φ010.

(4.5)

The matrix element of the Faddeev-Popov operator between such fields is given by

∫

d3x φa(DAφ)a = 4π

∞
∫

0

dr r2 φ010

(

− 1

r2
∂rr

2∂r + 2g
f − 1 + g−1

r2

)

φ010. (4.6)
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Figure 7: The density of the matrix element 〈Φ |D̂A|Φ 〉.

The sign of this expression determines the positivity of the Faddeev-Popov operator. The

radial Laplacian is a positive definite operator (for suitable boundary conditions), so the

sign depends crucially on the f -dependent multiplicative term. Since we may in principle

always find a field for which this matrix element is dominated by contributions from the

multiplicative term, if f − 1 + g−1 becomes negative the matrix element also becomes

negative. For example, take g = 1 and α(r) again as in (3.18). The corresponding f is given

in figure 3 and becomes negative. Now choose φ010(r) = α(r). The field Φ(x) = φ010(r)x
a/r

has finite norm,

‖φ‖2 =

∫

d3x φa(x)φa(x) = 4π

∞
∫

0

dr r2α(r)2 =
4π

9
√

3
.

The matrix element of the Faddeev-Popov operator acting on this φ is

〈Φ |D̂A|Φ 〉 = 4π

∞
∫

0

dr r2 α(r)

(

2f(r)

r2
− 1

r2
∂rr

2∂r

)

α(r)

= 4π

∞
∫

0

dr r2 α(r)

(

2f(r)α(r)

r2
− f(r) sin(2α(r))

r2

)

' −0.85.

and a plot of the integrand is given in figure 7. Thus the Faddeev-Popov operator is not

positive definite.

We have now seen that the positivity of the lowest term in the harmonic expansion

depends on the sign of the combination

f̄(r) := g

(

f(r)− 1 +
1

g

)

. (4.7)

We now turn to the higher harmonics. Writing Aa
i (x) in terms of f̄ , the Faddeev-Popov

operator becomes

DA = −∇2 − [Ā, ∂i·] ,
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where the gauge field Ā is defined by

Āa
i (x) :=

f̄(r) − 1

r
εiab

xb

r
= gAa

i (x).

All the factors of the coupling have been tidied away into f̄ . The remainder of the Grotowski

and Schirmer argument now follows with f(r) in [10] replaced by f̄ . So, we divide the matrix

element 〈Φ |DA|Φ 〉 into four pieces, I, II, III and IV. The first contains the j = 0 term

which is given above, the remainder correspond respectively to j ≥ 1 with l = j, l = j − 1,

l = j + 1. The second term is

II = 4π
∑

m, l=j

∞
∫

0

drr2 φllm(r)

(

− 1

r2
∂rr

2∂r +
l(l + 1) + f̄(r) − 1

r2

)

φllm(r). (4.8)

In order for II to be positive we require f̄(r) ≥ −1. However we have already seen that

f̄ ≥ 0 is required for positivity in the radial part. The third term is

III = 4π
∑

m, l=j−1

∞
∫

0

drr2 φjlm(r)

(

− 1

r2
∂rr

2∂r +
l(l + 2 − f̄(r))

r2

)

φjlm(r) , (4.9)

and since j ≥ 2 (for j = 1 the last term vanishes) we require f̄ ≤ 3. The final term is

IV = 4π
∑

m, l=j+1

∞
∫

0

drr2 φjlm(r)

(

− 1

r2
∂rr

2∂r +
(l + 1)(l − 1 + f̄(r))

r2

)

φjlm(r) , (4.10)

which is non-negative as l ≥ 2 here. Therefore, for 0 ≤ f̄ ≤ 3 each term in the Faddeev-

Popov matrix element is positive, giving us a positive definite operator. This is the exten-

sion of the Grotowski and Schirmer argument to arbitrary g.

4.3 Outside the horizon

As we have demonstrated, if f̄ becomes negative then we may find fields (we gave a radial

field as an example) such that the Faddeev-Popov operator fails to be positive definite.

In this section we will show that all f̄ must somewhere become negative (for any g), and

therefore the corresponding gauge fields must lie outside the Gribov horizon.

Let f(r) and α(r) be given by

f(r) =
r2α′′(r) + 2rα′(r)

sin(2gα(r))
+ 1 − 1/g,

=⇒ f̄(r) =
gr2α′′(r) + 2rgα′(r)

sin(2gα(r))

gα(r) ∼
{

nπ + λr as r → 0,

mπ + µ/r2 as r → ∞.

(4.11)

We will now prove that all such f̄(r) must take negative values. To begin, if gα(r) interpo-

lates between different multiples of π at 0 and ∞ then at some point it must cross an odd
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Figure 8: Example of the behaviour of f(r) at points (here r = 1) where gα becomes a multiple

of π/2

multiple of π/2. We have already seen that in order for f̄(r) to be well behaved at such a

point, call it c, then we must have

gα(r) = (2n + 1)
π

2
+ gγ(r),

γ(r) = const.

(

r − c3

r2

)

+ . . . near r = c.

At such a point, f̄(c) is given by

f̄(c) = lim
r→c

r2gγ′′(r) + 2rgγ′(r)

sin((2n + 1)π + 2gγ(r))
= lim

r→c
−r2gγ′′(r) + 2rgγ′(r)

sin(2gγ(r))

= −1.

Thus f̄(r) must take negative values in a region around r = c. Taking, for example,

g = c = 1, the resulting f̄(r) as α(r) passes through π/2 at r = 1 is given in figure 8.

We may now restrict to α(r) which take the same value at r = 0 and r = ∞. Expand

gα(r) = mπ + gγ(r) where γ(r) vanishes at r = 0, r = ∞. The corresponding gauge

configurations are

f̄(r) =
r2gγ′′(r) + 2rgγ′(r)

sin(2gγ(r))
, (4.12)

which is independent of m. All such gauge transformations lead to the same configurations

and copies. If these gα(r) cross (multiple times) the value π/2 then they must behave as

above and become negative. Therefore we need consider only the case where α(r) obeys

α(0) = 0, α(∞) = 0, |gα(r)| < π/2. (4.13)

An example of this kind is given by our staple, (3.18). We know that for such α(r) when

r is small α(r) ∼ ar with the constant a free. When a > 0 there must exist a point r∗

such that α(r∗) is a positive maximum; this follows from the behaviour at large r where α

behaves like b/r2 and demanding that α be continuous. At the turning point

f̄(r∗) =
r∗2gα′′(r∗)

sin(2gα(r∗))
. (4.14)
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The second derivative is negative as this is a maximum. Since α(r∗) > 0 and by assumption

0 < 2gα < π this implies sin(2gα) > 0. By continuity f̄(r) is then negative at and in a

region around r = r∗.

If at small r, α(r) ∼ ar with a < 0 then there must exist an r∗ such that α(r∗) is a

negative minimum. In this case the numerator of (4.14) is positive but the denominator is

negative and f̄(r∗) is again negative.

This completes the proof that the f̄(r) we construct always take (both positive and)

negative values. One may imagine that there are other ways to take the limit (3.14), for

example by adding higher powers of r or α(r) which vanish in the limit. Such terms can not

affect the leading order behaviour of α(r) as r → 0 and ∞, however, as these are necessary

for the limit to exist and f̄(r) to be well defined. As it is only this leading order behaviour

which we used to prove that the f̄(r) become negative, such corrections do not affect our

argument.

In summary, we have seen that no spherical copies constructed in this way lie within

the Gribov horizon, contrary to the statements made by Grotowski and Schirmer, as the

Faddeev-Popov operator at such configurations fails to be positive definite when acting on

radial vectors.

4.4 Monopole configurations

As mentioned earlier, it is not physically required that our configurations have finite norm,

only finite energy. Without the restriction of finite norm we may generate copies of con-

figurations which behave asymptotically as monopole solutions (we are here thinking of

embedding our configurations in a Georgi-Glashow type model). We begin with the spher-

ically symmetric configuration

Aa
i (x) =

f̄(r) − 1

gr
εiab

xb

r
, (4.15)

which we have written in terms of f̄(r). We will ask that α(r) and f̄(r) behave as before

for small r, but that f̄(r) → 0 as r → ∞ so that we asymptotically approach the usual

monopole profile. This change in boundary condition requires a change in the asymptotic

behaviour of α(r). It is not difficult to show that if gα(r) = c/r+gᾱ(r), where ᾱ(r) behaves

as 1/r2 and higher terms as before, that the asymptotic behaviour of f̄(r) becomes

f̄(r) =
r2gα′′ + 2rgα′

sin(2gα)

∼ 2gᾱ

sin(2gᾱ)
×O

(

1

r

)

,

(4.16)

which vanishes as r → ∞ as required.

Note that such configurations, like those found above, have finite energy. An example

is to take

α(r) =
r

1 + r2
, (4.17)

which at g = 1 has energy ‖FA‖ ' 10.6. The corresponding gauge configuration is shown

in figure 9. All our earlier arguments extend immediately to this class of configurations;
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Figure 9: The gauge field f̄(r) constructed from (4.17), with g = 1, which behaves asymptotically

as a monopole and has Gribov copies.

the copies may be made infinitesimally close, f̄(r) must take negative values and so such

gauge fields lie outside the Gribov horizon.

5. The loss of colour

We now return to the construction of colour charges started in section 2. Recall that

the ability to associate colour with the charge (2.9) relied on it being gauge invariant.

This followed from the transformation properties of the dressing (2.10) which in turn was

derived from the uniqueness of the Coulomb gauge fixing. The fact that we have copies

will invalidate this argument. In this section we want to make this breakdown of colour

explicit.

A question not clarified in section 2 is: what colour does the charge (2.9) have? At

first sight this looks quite complicated as Ψ(x) is a composite operator constructed out

of both the matter and gauge fields which can both contribute to colour. However, the

overall colour is quite simple to determine in practice. Before we do this, we should say

that in the bulk of this paper we have described A(x) in terms of a classical field, rather

than a quantum operator. We are thinking of such objects, and the matter fields, as

the eigenvalues in the Schrödinger representation. Wave functionals ζ[Ai, ψ] = 〈Ai, ψ | ζ〉
represent quantum states | ζ 〉 on which Âi(x) and ψ̂(x) are diagonalised. We satisfy the

canonical commutation relations by representing the conjugate momenta Êa
i and ψ̂† by

functional differentiation. The dressed operator h−1ψ is therefore also diagonalised. In

this way we may perform the manipulations below, understanding them to represent the

action of operators on wave functionals.

Neglecting copies for the moment, gauge invariance of Ψ(x) implies that its colour is

constant on any gauge orbit. Making this more explicit, we write

Ψ[A,ψ](x) = h−1[A](x)ψ(x) , (5.1)

then gauge invariance means

Ψ[AU , ψU ](x) = h−1[AU ](x)ψU (x) = h−1[A](x)UU−1ψ(x) = Ψ[A,ψ](x) . (5.2)
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On any orbit there exists a configuration where the Coulomb gauge condition holds and

hence the static dressing becomes the identity. At this point the colour charge is just

the matter field and we can easily arrange that it is, say, a localised blue charge there.

Anywhere else on the orbit the dressing will not be trivial but the overall colour will still

be blue. In this sense, the dressing is transparent to the matter’s colour. As we make a

gauge transformation away from the Coulomb gauge configuration the matter starts to lose

its colour but the dressing compensates so that the overall colour is preserved. That is, as

long as the dressing is sensitive to the applied gauge transformation.

The existence of copies, though, means that we have gauge transformations for which

the dressing is insensitive. In particular, the dressing evaluated on the configuration (3.1)

is unity as the gauge field is already in Coulomb gauge,

Ψ[A,ψ](x) = h−1[A](x)ψ(x) = ψ(x). (5.3)

Performing the gauge transformation (3.2) parameterised by α(r) obeying (3.17), the gauge

field is transformed to its copy (3.3), which is also in Coulomb gauge and so the dressing re-

mains unity. This does not compensate for the gauge rotation of the matter field generated

by (3.2), so that

Ψ[AU , ψU ](x) = U−1ψ(x) = cos (gα(r))ψ(x) − i sin (gα(r))
xa

r
σa ψ(x). (5.4)

It is clear that the commutator of this transformed Ψ with the colour charge operator will

not be the same as that of the original Ψ, which has therefore lost its colour.

The copies may be made infinitesimally close together, yet this breakdown of colour

is non-perturbative, as demonstrated by the coupling dependence of our explicit examples.

However, it should be possible to develop a perturbation expansion around such a solution

and see the breakdown of colour in perturbation theory. As a starting point for this and

other investigations there are other classes of configurations in the literature where non-

perturbative effects becomes apparent upon the inclusion of the coupling. We illustrate

this in appendix C with Henyey’s axially symmetric solutions.

6. Conclusions

There are two main conclusions from this paper. The first is that explicit examples of

Gribov copies in Coulomb gauge are readily produced. These copies arise not only for

regular gauge transformations that are smoothly connected to either the identity mapping

or the centre of the gauge group, but also for regular transformations with mixed asymptotic

conditions which we saw generated open boundaries. Let us re-emphasise that this is a

wide class of copies – for the case of small gauge transformations any suitably bounded

function α(r) with the small and large r behaviour

α(r) ∼ r as r → 0 and α(r) ∼ 1

r2
as r → ∞
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gives a finite norm, finite energy configuration and copy as in (3.1), (3.3), (3.13). Al-

though the copies may be infinitesimally close to each other the configurations are non-

perturbative. This point was only apparent after inclusion of the coupling, which we feel

it is important to maintain in future studies.

The other major conclusion from this analysis is the impact these copies have on the

construction of colour charges and confinement. Although one may define colour pertur-

batively, such a definition breaks down non-perturbatively. We constructed a matter field

on which a physical colour was well defined provided that the gauge fixing condition, used

in the dressing, picked out a unique representative on each gauge orbit. It is here that

the copies enter, the existence of which contradicts this uniqueness and gives the colour a

gauge dependence. This shows that coloured charges cannot correspond to physical asymp-

totic sates and are therefore confined to colourless bound states. This has disentangled the

fundamental reason for confinement from the detailed dynamics which dictate the scale of

hadronisation.

An immediate open question is how we may extend our methods to create copies which

lie inside the Gribov horizon. An obvious choice is to change the form of the gauge fields,

as in Henyey’s class of copies [9] where spherical symmetry is replaced by axial symmetry.

Alternatively, we could change the form of the gauge transformation.

A deeper question to be addressed is that of the physical significance of the Gribov

horizon. To what extent does it matter whether a given configuration lies inside or outside

the horizon? There is at present no physical motivation for working inside the horizon —

such a choice is essentially arbitrary as we could choose to work in any other Gribov region,

nor does the choice eliminate the problem of copies. We feel that this work and such future

investigations as outlined above will help towards understanding these important topics.

Note added in proof: another method to try to avoid gauge fixing is the gauge invariant

exact renormalisation group, see e.g. [16].
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A. Baker-Campbell-Hausdorff type formula

In this appendix we collect together some results associated with the Baker-Campbell-

Hausdorff series used in section 2. The basic result which is discussed in many quantum

mechanics texts is that

eAeBe−A = B + [A,B] +
1

2!
[A, [A,B]] +

1

3!
[A, [A, [A,B]]] + · · ·

= e
−→
A B , (A.1)
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where we define
−→
AnB by

−→
A 0B = B,

−→
AB = [A,B] and

−→
AnB =

−→
A (

−→
An−1B). In addition

we have the result that if δ is a derivation then

eAδe−A =
1 − e

−→
A

−→
A

δA . (A.2)

It is helpful to recall how this result is derived as we will need to extend it to the case

where we have an additional derivation acting on the whole of this equation.

The proof of (A.2) rests on the simple identity that

d

ds
esAδe−sA = −esA(δA)e−sA = −es

−→
A δA . (A.3)

Integrating this we see that

eAδe−A = −
∫ 1

0
ds esA(δA)e−sA = −

∫ 1

0
ds es

−→
A δA , (A.4)

from which the result follows.

We now extend this result and introduce another derivation ∂ and calculate ∂(eAδe−A).

Using the Leibnitz property of the derivation, we get three terms, two of which involve the

derivation acting on eA. Using (A.2) and (A.4) we find that

∂(eAδe−A) =
1 − e

−→
A

−→
A

∂δA +

[

1 − e
−→
A

−→
A

,

−−−→
1
−→
A

∂A

]

δA . (A.5)

Expanding in powers of A is straightforward and to quadratic accuracy we find that

∂(eAδe−A) = −∂δA − 1
2 [A, ∂δA] − 1

2 [∂A, δA] , (A.6)

which is used in the main text.

B. Open example

In this appendix we construct an ‘open’ type gauge transformation which obeys U(0) =
�

and U(x) → −�
at spatial infinity. To simplify the construction we will choose g = 1 and

look for an αo which is monotonically increasing between 0 and π and therefore takes the

problematic value π/2 once and only once. We demand that αo(r) has continuous second

derivatives in order for f(r) to be continuous, which implies we require three degrees of

freedom at each patch. We will construct such an αo by patching continuous functions

together, our ansatz for which will be:

αo(r) =







































Are−br 0 ≤ r ≤ 1

2
,

π

2
+ λ

(

r − 1

r2
)

1

2
≤ r ≤ 4,

π +
d2

r2
+

d3

r3
+

d4

r4
4 ≤ r < ∞.

(B.1)
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Figure 10: αo(r) which corresponds to the gauge transformations approaching −� at spatial

infinity.

We have chosen to patch the functions together at r = 1/2 and r = 4, choosing αo(1) = π/2

— note that although the functions chosen are not monotonically increasing on their own

they may be made so on their patches for suitable coefficients. Note the choice of the

second function, determined by (3.26).

At r = 1/2 the equations imposing continuity of αo(r), α′
o(r), α′′

o(r) may be solved to

give

A =
π

96

(

− 121 + 7
√

865
)

e41/17−
√

865/17 ' 5.492,

b =
82

17
− 2

17

√
865 ' 1.363,

λ =
31π

96
− π

96

√
865 ' 0.052.

(B.2)

The first patching function has a turning point at 1/b ' 0.733 which is outside its range

of definition and is therefore monotonically increasing. The second patching function is

always increasing since λ > 0. Continuity at r = 4 implies

d2 =
5067π

32
− 213π

32

√
865 ' −117.566,

d3 = −984π + 40π
√

865 ' 604.553,

d4 = 1600π − 64π
√

865 ' −886.861.

(B.3)

The derivative of the third patching function has no real roots in its range and is mono-

tonically increasing there. A plot of αo(r) is given in figure 10.

We now turn to the L2− norm of our configurations. f(r) is a continuous function

and is therefore integrable. For large r (i.e. using the third patching function) f(r) may

be expanded

f(r) = 1 + 2
d3

d2
r−1 + O

(

r−2
)

.

The integrand of ‖A‖2 is therefore bound by r−2 at large r and A has finite norm. The

copy has norm ‖AU‖ given by (3.12). The behaviour of the copy is not severely modified
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at infinity; cos(2αo) → 1 with r−4 corrections which can only improve convergence of the

first term. The second and third term go to zero like r−4 and the integral will converge.

The copy therefore also has finite norm.

The energy is also finite as we now show. The derivative f ′(r) is continuous except

at the patching points where it has only finite jumps (in particular it is smooth at r = 1,

αo = π/2) and is therefore integrable. With reference to (3.10) f(r) behaves as follows at

the boundaries,

(f2(r) − 1)2 = 16b2r2 + O(r3) for r small,

(f2(r) − 1)2 = 16
d2
3

d2
2

r−2 + O(r−3) for r large,

f ′(r) = −2
d3

d2
r−2 + O(r−3) for r large,

and therefore ‖F‖2 is also finite. The copy has the same energy.

Although we have not given a closed form expression for αo(r) we may make this func-

tion and therefore f(r) arbitrarily smooth at the patching points by requiring continuity

of the higher derivatives of αo. This is achieved through the inclusion of corrections to the

patching functions. Requiring αo to be monotonically increasing is more restrictive, but

this may be relaxed anywhere except very near αo = π/2 (or multiples thereof) without

further complication.

C. Axially symmetric copies

We review Henyey’s derivation [9] of the equations for the existence of copies of radially

symmetric gauge fields, here including the coupling. The gauge field and gauge transfor-

mation are

A = ia(r, θ)φ̂ σ3 = −2a(r, θ)φ̂ T 3, U = cos(gα(r))
�

+ i sin(gα(r))k̂ · σ, (C.1)

with k̂ = (cos(φ), sin(φ), 0) and α(r, θ) = rb(r) sin(θ). The equation to be solved, c.f. (3.5),

is

a(r, θ) =
1

2gr sin(θ)
−

b(r) + r2 sin2(θ)

(

b′′(r) + 4
r b′(r)

)

β−1 sin
(

2grβb(r) sin(θ)
) . (C.2)

Here β is the scaling parameter, α → βα which causes copies to coalesce. The boundary

conditions are that b(r) = b0 + b2r
2 + . . . with b0 6= 0 near the origin and b(r) behaves as

1/r3 at infinity. We take Henyey’s example,

b(r) =
K

(r2 + 1)
3

2

. (C.3)

In the limit β → 0 the two copies coalesce to the configuration

a(r, θ) → 15

2g

r sin(θ)

(r2 + 1)2
. (C.4)

The non-perturbative nature of this infinitesimal copy is manifest. As proven in [14] this

configuration lies on the Gribov horizon.
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